Multilayer Optimization Approach for Fuzzy Systems

نویسندگان

  • Ivan Nunes da Silva
  • Rogério Andrade Flauzino
چکیده

The design of fuzzy inference systems comes along with several decisions taken by the designers since is necessary to determine, in a coherent way, the number of membership functions for the inputs and outputs, and also the specification of the fuzzy rules set of the system, besides defining the strategies of rules aggregation and defuzzification of output sets. The need to develop systematic procedures to assist the designers has been wide because the trial and error technique is the unique often available (Figueiredo & Gomide, 1997). In general terms, for applications involving system identification and fuzzy modeling, it is convenient to use energy functions that express the error between the desired results and those provided by the fuzzy system. An example is the use of the mean squared error or normalized mean squared error as energy functions. In the context of systems identification, besides the mean squared error, data regularization indicators can be added to the energy function in order to improve the system response in presence of noises (from training data) (Guillaume, 2001). In the absence of a tuning set, such as happens in parameters adjustment of a process controller, the energy function can be defined by functions that consider the desired requirements of a particular design (Wan, Hirasawa, Hu & Murata, 2001), i.e., maximum overshoot signal, setting time, rise time, undamped natural frequency, etc. From this point of view, this article presents a new methodology based on error backpropagation for the adjustment of fuzzy inference systems, which can be then designed as a three layers model. Each one of these layers represents the tasks performed by the fuzzy inference system such as fuzzification, fuzzy rules inference and defuzzification. The adjustment procedure proposed in this article is performed through the adaptation of its free parameters, from each one of these layers, in order to minimize the energy function previously specified. In principle, the adjustment can be made layer by layer separately. The operational differences associated with each layer, where the parameters adjustment of a layer does not influence the performance of other, allow single adjustment of each layer. Thus, the routine of fuzzy inference system tuning acquires a larger flexibility when compared to the training process used in artificial neural networks. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, such methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

An efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization

This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...

متن کامل

A Fuzzy-GA Approach for Parameter Optimization of A Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children

Hybrid fuzzy expert systems are one of the most practical intelligent paradigm of soft computing techniques with the high potential for managing uncertainty associated to the medical diagnosis. The potential of genetic algorithm (GA) by inspiring from natural evolution as a learning and optimization technique has been vastly concentrated for improving fuzzy expert systems. In this paper, the GA...

متن کامل

Quasi Optimization of Fuzzy Neural Networks

The fuzzy flip-flop based multilayer perceptron, named Fuzzy Neural Network, FNN is proposed for function approximation. In recent years much effort has been made for the development of a special kind of bacterial memetic algorithm for optimization and training of the fuzzy neural network parameters. In this approach the FNN parameters have been encoded in a chromosome and participate in the ba...

متن کامل

TRANSPORT ROUTE PLANNING MODELS BASED ON FUZZY APPROACH

Transport route planning is one of the most important and frequent activities in supply chain management. The design of information systems for route planning in real contexts faces two relevant challenges: the complexity of the planning and the lack of complete and precise information. The purpose of this paper is to nd methods for the development of transport route planning in uncertainty dec...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009